Спросить
Войти

МНОГОЛЕТНЕМЁРЗЛЫЕ ОТЛОЖЕНИЯ С ПЛАСТОВЫМИ ЛЬДАМИ НА ПОБЕРЕЖЬЕ ЮГОРСКОГО ПОЛУОСТРОВА

Автор: Белова Наталия Геннадиевна

Арктика и Антарктика

Правильная ссылка на статью:

Белова Н.Г., Бабкина Е.А., Дворников Ю.А., Нестерова Н.Б., Хомутов А.В. — Многолетнемёрзлые отложения с пластовыми льдами на побережье Югорского полуострова // Арктика и Антарктика. - 2019. - № 4. DOI: 10.7256/2453-8922.2019.4.31594 URL: https;//nbpublish.com/Hbrary_read_article.php?id=31594

Многолетнемёрзлые отложения с пластовыми льдами на побережье Югорского полуострова

Белова Наталия Геннадиевна

кандидат географических наук

научный сотрудник, Институт криосферы Земли, Тюменский научный центр СО РАН; Тюменский государственный университет; Географический факультет МГУ имени М.В. Ломоносова

625000, Россия, Тюменская область, г. Тюмень, ул. Малыгина, 86 И nataliya-belova@yandex.ru

Бабкина Елена Алексеевна

младший научный сотрудник, Институт криосферы Земли, Тюменский научный центр СО РАН 625000, Россия, Тюменская область, г. Тюмень, ул. Малыгина, 86

И ea_pereval@mail.ru

Дворников Юрий Александрович

кандидат геолого-минералогических наук научный сотрудник, Институт криосферы Земли, Тюменский научный центр СО РАН 625000, Россия, Тюменская область, г. Тюмень, ул. Малыгина, 86

И ydvornikow@gmail.com

Нестерова Нина Байроновна

младший научный сотрудник, Тюменский государственный университет 625003, Россия, Тюменская область, г. Тюмень, ул. Володарского, 6

И n.b.nesterova@utmn.ru

Хомутов Артем Валерьевич

кандидат геолого-минералогических наук

ведущий научный сотрудник, Институт криосферы Земли, Тюменский научный центр СО РАН; Тюменский

государственный университет

625000, Россия, Тюменская область, г. Тюмень, ул. Малыгина, 86

И аkhomutov@gmail.com

Статья из рубрики "Многолетнемерзлые породы и подземные льды Арктики, Антарктики и горных регионов" Аннотация.

В сентябре 2019 года были изучены разрезы многолетнемёрзлых четвертичных отложений в 5 км к востоку от пос. Амдерма в районе лагуны Первой Песчаной. В

данном регионе многочисленны пластовые залежи подземных льдов, которые исследователи относят либо к внутригрунтовым образованиям, либо к погребённым ледниковым льдам. С целью реконструкции условий формирования толщи многолетнемёрзлых отложений была детально описана пластовая залежь подземного льда мощностью более 4,5 м, вскрывшаяся в стенке термоцирка на расстоянии 1 км от береговой линии. Описано строение льда пластовой залежи и перекрывающих отложений. Охарактеризована текстура и структура льда, отобраны образцы для определения содержания стабильных изотопов кислорода и водорода во льду, а также содержания метана и состава основных катионов и анионов. Изученный пласт льда согласно перекрывается суглинистыми отложениями с обломками раковин моллюсков. Особенности криолитологического строения разреза (согласный верхний контакт залежи, горизонтальная слоистость во льду, постепенное уменьшение содержания грунтовых включений во льду вниз по разрезу) говорят в пользу гипотезы о формировании пластового льда в результате медленного промерзания вмещающих отложений. В строении ледяных залежей и вмещающих отложений не встречено признаков погребения ледникового или иного типа первичноповерхностного льда.

10.7256/2453-8922.2019.4.31594

Дата направления в редакцию:

11-12-2019

Дата рецензирования:

04-12-2019

Полевые работы 2019 года по исследованию термоденудации на Югорском полуострове выполнены в рамках проекта РФФИ 18-05-60222. Исследование разрезов с пластовыми льдами проводилось при поддержке гранта Президента РФ МК-398.2019.5.

ВВЕДЕНИЕ

Пластовые льды — уникальный природный объект в криосфере Земли. В настоящее время не выявлено массового формирования современных пластовых залежей льдов, кроме случаев захоронения ледниковых и снежниковых льдов и образования льдов на

дне моря в местах эмиссии газов [1, 2 и др,]. Большая часть существующих сегодня пластовых залежей сформировалась в позднем неоплейстоцене. Сам термин «пластовый лёд» — морфологический («залежь льда с горизонтальными размерами, значительно превышающими вертикальные» он не несёт генетической нагрузки. Вместе с тем, неоднородное пространственное распределение пластовых льдов в Арктике позволяет предположить, что для их формирования необходимы были специфические условия

промерзания вмещающих отложений. К примеру, пластовые залежи не характерны для равнин Восточной Сибири, но многочисленны на приморских низменностях Западной Сибири и на побережье Восточной Чукотки. Исследователи по-разному реконструируют палеогеографические условия, в которых появились такие льды. Они могли сформироваться при эпигенетическом промерзании отложений после относительного падения уровня моря в результате регрессии моря или неотектонического подъема

(например, [4, 51 и др.). Согласно другой широко распространённой точке зрения, условия для образования пластовых льдов могли появиться при дегляциации территории [6-91, по аналогии с пластовыми льдами дельты р. Маккензи в Канаде I"10-121. При массовом формировании пластовых льдов в каждом районе преобладали определённые механизмы их образования, зависевшие от локальных условий. Регион наиболее массового распространения пластовых льдов - побережье Карского моря - один из наиболее спорных районов с точки зрения реконструкции позднечетвертичной истории. Исследование классических районов с применением современных методов - один из способов пересмотра и дополнения существующих представлений о палеогеографии юго-западной части Карского моря. В одном из подобных районов в восточной части Югорского полуострова в результате потепления последнего десятилетия сформировались многочисленные термоцирки с новыми обнажениями пластовых льдов. Выявление механизмов и условий их формирования позволит уточнить особенности криогенеза и развития территории в позднем неоплейстоцене-голоцене.

РАЙОН РАБОТ

На востоке Югорского п-ова разрезы мёрзлых отложений с пластовыми залежами подземных льдов изучаются с 1984 года. Наибольшее внимание исследователи уделяли разрезу урочища Шпиндлер на побережье Карского моря в 40 км к востоку от Амдермы

[4, 13-271. Также пластовые льды вскрывались к западу от лагуны Первой Песчаной в 5-6 км к востоку от пос. Амдерма ^—27—29]; изучались термоцирки, расположенные непосредственно на берегу Карского моря. В 2019 году был изучен новый разрез с пластовым льдом, удалённый от береговой линии на 1 км.

МЕТОДЫ

Перед экспедицией 2019 года на побережье Югорского п-ова в район пос. Амдерма, организованной Институтом криосферы Земли, были поставлены две основные задачи: 1) Возобновление мониторинга активности термоденудационных процессов, проводимого

на данном ключевом участке регулярно с 2000 по 2010 гг. [24, 27], 2) Исследование криогенного строения разрезов четвертичных отложений, вскрывающихся в стенках термоцирков.

По результатом рекогносцировочного обследования территории было выделено шесть термоцирков J3011.

В термоцирке №3 Внутреннем (69,748 с.ш., 61,788 в.д., рис. 1) наиболее детально обследовано строение разреза мёрзлых четвертичных отложений. Описано строение льдов и перекрывающих отложений. Отобраны образцы перекрывающих отложений на гранулометрический состав и содержание основных катионов и анионов в водной вытяжке. Образцы льда отбирались для определения изотопного состава кислорода и водорода во льду, а также содержания основных катионов и анионов. Образцы газовых включений во льду отбирались методом head space для определения содержания метана

Рис. 1. Термоцирк Внутренний в 5 км к востоку от пос. Амдерма. Стенка северовосточной экспозиции высотой 4-5 м (южный борт термоцирка). Фото Нестеровой Н. Б.

РЕЗУЛЬТАТЫ

Перекрывающие отложения. Пластовая ледяная залежь перекрывается суглинистыми отложениями мощностью 4-5 м (рис. 2). Суглинки тёмно-серые, плотные, неявнослоистые за счёт чередования мелкооскольчатых и крупнооскольчатых суглинков. Ледяные шлиры не образуют регулярную сетку, часто ориентированы вертикально. Встречаются гнёзда чистого прозрачного пузырчатого льда размером до 8 см с удлинёнными воздушными пузырьками. В суглинках встречены осколки раковин моллюсков (к примеру, в северном борту термоцирка на высоте 0,9 м над кровлей пласта залегает in situ единичная ломкая раковина), отдельные мелкие валуны. В днище термоцирка многочисленны валуны размером более 0,5 м, вероятно, изначально залегавшие в перекрывающих лёд суглинках.

Рис. 2. Отбор образцов из суглинков, перекрывающих пластовую залежь. Южный борт термоцирка. Фото Бабкиной Е. А.

Верхний контакт залежи преимущественно первичный, слоистость во льду повторяет форму кровли пласта (см. рис. 2). На контакте и в перекрывающих суглинках встречены валуны до 0,7 м в поперечнике (рис. 3), часто они залегают субгоризонтально как на контакте, так и в перекрывающих валунных суглинках.

Рис.3. Кровля пластовой залежи в северном борту термоцирка. Валуны встречены на верхнем контакте пласта, в перекрывающих суглинках и в теле самой залежи (1 — углубление на месте валуна, выпавшего во время описания). Условными знаками показаны места залегания раковин моллюсков в мёрзлых отложениях. Фото Беловой Н. Г.

Строение пластовой залежи. Лёд залежи слоистый за счёт изменения содержания грунтовых и воздушных включений во льду. Верхние 1,5 м залежи значительно более насыщены грунтовыми включениями, представленными частицами пылеватой, песчаной и галечной размерности (рис. 3, 4). Прослои чистого льда тонкие, мощностью преимущественно менее 1 см. Лёд мелко- и среднекристаллический, в тонких прослоях кристаллы меньше, в более крупных размер кристаллов около 1 см. Во льду встречены осколки раковин моллюсков - они залегают в пластовой залежи в 0,4 м ниже кровли в южном борту термоцирка и в 1,5 м ниже кровли в северном борту. На поверхности пластовой залежи обилен ракушечный детрит, вытаявший из перекрывающих отложений или из самого пласта. В северном борту термоцирка встречен валун около 0,15 м в поперечнике, залегавший в мёрзлой стенке. Слоистость залежи не изменяется на контакте с валуном.

Рис. 4. Структура льда средней части залежи в естественном (слева) и поляризованном (справа) свете. Фото Беловой Н. Г.

Нижняя часть залежи на глубине 2-4,5 м от кровли сложена переслаиванием чистого прозрачного льда, чистого пузырчатого льда (рис. 5), мутного за счёт грунтовых включений льда, и слоистого льда. Размерность грунтовых включений во льду - от глинистой до гравийно-галечной. Редко встречаются мелкие валуны.

Рис. 5. Лёд из нижней части залежи, содержащей меньше грунтовых включений. Фото Беловой Н. Г.

Из льда залежи и перекрывающих отложений было отобрано 43 образца на определение содержания стабильных изотопов кислорода и водорода. Отбор производился преимущественно в южном борту термоцирка (рис. 6). В тех же точках, но с более редким шагом, методом head space было отобрано 19 образцов газовых включений во льду для определения содержания метана. Лёд пластовой залежи и текстурообразующие льды в перекрывающих отложениях опробованы для определения состава основных катионов и анионов во льду, всего отобрано 17 образцов (3 из текстурообразующего льда и 14 из пластовой залежи).

Рис. 6. Схема отбора образцов для определения содержания стабильных изотопов кислорода и водорода. Указаны порядковые номера образцов. Условными знаками показаны места залегания раковин моллюсков в мёрзлых отложениях. Фото Беловой Н. Г.

ОБСУЖДЕНИЕ

Отложения, перекрывающие пластовые льды различаются по литологическому составу. В термоцирках Западном (№1) и Восточном (№2, см. [30]), расположенных на берегу Карского моря и описанных в статье Е. А. Слагоды с соавторами-28!, льды верхнего яруса перекрывались гравийно-галечными и песчано-супесчаными (дельтовыми, по Е. А. Слагоде) отложениями, в то время, как в обследованном термоцирке 3 пластовая залежь перекрыта преимущественно серыми суглинками. В северо-западном сегменте данной термоденудационной формы, примерно в 200 метрах от участка описаний, где лёд практически полностью вытаял, в стенке вскрываются пески со слоистостью ряби и суглинистыми прослоями мощностью порядка 5 м. Возможно, в этой части термоцирка лёд залегал в песчаных отложениях. Мозаичность и резкая смена литологического состава отложений, залегающих на одних и тех же абсолютных высотах, может свидетельствовать о размыве морских отложений, лежащих в основании разреза, с последующим заполнением более молодыми осадками иного генезиса. С другой стороны, формирование мощных залежей пластовых льдов при неравномерном промерзании отложений могло изменить абсолютные высоты залегания различных слоёв за счет изменения объема пород при льдообразовании.

Предположение о захоронении в данном регионе базального льда шельфового ледника,

надвигавшегося на Югорский полуостров с Карского моря около 90 тыс. лет назад

19, 20, 31], материалами полевых исследований обнажений 2019 года не подтверждается. Признаков захоронения ледникового льда (несогласный верхний контакт, складчатые деформации во льду) в изученном разрезе не встречено. Напротив, о внутригрунтовом формировании залежей свидетельствует согласный верхний контакт, слоистость во льду,

повторяющая форму кровли пласта, постепенное увеличение льдосодержания в залежи вниз по разрезу, отсутствие следов деформаций во льду и перекрывающих отложениях. Захоронение и длительная консервация ледникового льда (даже базального) в суглинистых морских отложениях на широте менее 70° с. ш. представляются маловероятными. М. О. Лейбман с соавторами на основании результатов геохимического исследования пластовых льдов и их морфологической схожести со льдами урочища

Шпиндлер предполагали внутригрунтовый генезис Г27, 291. Предполагаемый нами вывод о внутригрунтовом формировании пластовых залежей новых обнажений, исследованных в 2019 г., будет более обоснован после получения результатов лабораторных исследований отобранных образцов. Анализ химического состава водной вытяжки из перекрывающих отложений позволит подтвердить или опровергнуть морской генезис суглинков с обломками ракуши. Содержание стабильных изотопов кислорода и водорода во льду и характер их распределения в теле залежи, содержание метана во льду помогут определить источник воды, сформировавшей ледяной пласт. На основании данных об изотопном составе кислорода и водорода в залежах урочища Шпиндлер Ю. К.

Васильчук ^ выделил Югорский тип изотопных вариаций в пластовых льдах со значительным разбросом значений вдоль пласта в центральной части залежи и однородными значениями в верхней и нижней частях. Характер изотопного распределения в исследованной залежи может свидетельствовать в пользу единого (или различного) генезиса пластов урочища Шпиндлер и района лагуны Первой Песчаной.

Предварительно можно предположить, что пластовые залежи формировались во время медленного эпигенетического промерзания вышедших из-под уровня моря морских (суглинистых) и дельтовых (слоистых песчаных) отложений.

ВЫВОДЫ

В 5 км восточнее посёлка Амдерма (Ненецкий АО) исследованы слоистые пластовые ледяные залежи мощностью более 4,5 м, перекрытые суглинистыми отложениями с обломками раковин моллюсков. Особенности криолитологического строения разреза (согласный верхний контакт залежей, слоистость во льду, постепенное уменьшение содержания грунтовых включений во льду вниз по разрезу, наличие в соседних разрезах сходных по морфологии пластов льда, залегающих в отложениях иного литологического состава, и др.) говорят в пользу гипотезы о формировании залежей в результате медленного эпигенетического промерзания вмещающих отложений.

БЛАГОДАРНОСТИ

Авторы благодарны М. О. Лейбман за консультации на этапах подготовки экспедиции и первичной обработки результатов, А. В. Баранской за обсуждение текста статьи и предложенные исправления, В. А. Морозову за всестороннюю помощь в организации полевых работ, а также руководству АО «Нарьян-Марский Объединенный Авиаотряд» за содействие при следовании в пос. Амдерма.

Библиография

1. Мельников В.П., Спесивцев В.И. Инженерно-геологические и геокриологические условия шельфа Баренцева и Карского морей. — Новосибирск: Наука. Сиб. Отделение, 1995. 198 с.
2. Баду Ю.Б. Основы концепции субаквального криолитогенеза морских отложений газоносных структур полуострова Ямал // Криосфера Земли, т. XXI, № 6, с. 76-84. DOI: 10.21782/^1560-7496-2017-6 (76-84).
3. Втюрин Б.И. Подземные льды СССР. М.: Наука, 1975. 215 с.
4. Васильчук Ю.К. Изотопные методы в географии: В 2 т. Т. I. Ч. 2: Геохимия стабильных изотопов пластовых льдов. М., Изд-во Моск. ун-та, 2012, 472 с.
5. Стрелецкая И.Д., Васильев А.А., Облогов Г.Е., Семенов П.Б., Ванштейн Б.Г., Ривкина Е.М. Метан в подземных льдах и мёрзлых отложениях на побережье и шельфе Карского моря // Лёд и Снег. 2018;58(1):65 — 77. https://doi.org/10.15356/2076-6734-2018-1-65-77
6. Каплянская Ф.А., Тарноградский В.Д. Реликтовые глетчерные льды на севере Западной Сибири и их роль в строении районов плейстоценового оледенения криолитозоны // Доклады АН СССР, 1976, т. 231, №5. C. 1185—1187.
7. Соломатин В.И. Петрогенез подземных льдов. М.: Наука, 1986. 215 с.
8. Соломатин В.И. Физика и география подземного оледенения: учеб. пособие. Новосибирск, Акад. изд-во "Гео", 2013, 346 с.
9. Астахов В.И., Назаров Д.В. Стратиграфия верхнего неоплейстоцена севера Западной Сибири и ее геохронометрическое обоснование // Региональная геология и металлогения. 2010. № 43. С. 36-47.
10. Mackay, J.R. 1971. The origin of massive ice beds in permafrost, Western Arctic coast, Canada. Canadian Journal of Earth Science 8 (4): 397—422.
11. Murton, J.B., Whiteman, C.A., Waller, R.I., Pollard, W.H., Clark, I.D., Dallimore, S.R. 2005. Basal ice facies and supraglacial melt-out till of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, western Arctic Canada. Quat. Sci. Rev. 24: 681 — 708.
12. Fritz, M., Wetterich, S., Meyer, H., Schirrmeister, L., Lantuit, H. and Pollard, W.H. 2011. Origin and Characteristics of Massive Ground Ice on Herschel Island (Western Canadian Arctic) as revealed by Stable Water Isotope and Hydrochemical Signatures // Permafrost and Periglac. Process., 22: 26—38.
13. Гольдфарб Ю.И., Ежова А.Б. Свидетельство возможного нахождения ископаемых льдов на шельфе северных морей // Проблемы четвертичной палеоэкологии и палеогеографии Северных морей. Апатиты, 1987. C. 25.
14. Гольдфарб Ю.И., Ежова А.Б. Ископаемые пластовые льды на п-ове Югорском // Вопросы развития и освоения мёрзлых толщ. Якутск, 1990. С. 22 — 31.
15. Иванов А.В., Гольдфарб Ю.И., Ежова А.Б. Структурные особенности и химический состав пластовых льдов урочища Шпиндлер на Югорском п-ове // МГИ, вып. 75, 1992. C. 86—89.
16. Лейбман М.О., Васильев А.А., Рогов В.В., Ингольфссон О. Исследование пластового льда Югорского полуострова кристаллографическими методами // Криосфера Земли,
2000, т. IV, №2. С. 31 — 40.
17. Leibman, M.O., Lein, A.Y., Hubberten, H.W., Vanshtein, B.G., Goncharov, G.N. 2001. Isotope-geochemical characteristics of tabular ground ice at Yugorsky peninsula and reconstruction of conditions for its formation // МГИ, 2001, №90. — С. 30—39.
18. Manley, W.F., Lokrantz, H., Gataullin, V., Ingolfsson, О., Forman, S.L., Andersson, T.
2001. Late Quaternary stratigraphy, radiocarbon chronology, and glacial history at Cape Shpindler, southern Kara Sea, Arctic Russia // Global and Planetary Change 31: 239— 254.
19. Ingolfsson, O., Lokrantz, H. 2003. Massive Ground Ice Body of Glacial Origin at Yugorski Peninsula, Arctic Russia // Permafrost and Periglac. Process., 14: 199—215.
20. Lokrantz, H.L., Ingolfsson, O., Forman, S.L. 2003. Glaciotectonised Late-Quaternary sediments at Cape Shpindler, Yugorski Peninsula, Arctic Russia: implications for ice

movements and Kara Sea Ice Sheet configuration // Journal of Quaternary Sciences 18: 527—543.

21. Леин А.Ю., Лейбман М.О., Пименов М.В. и др. Изотопно-биогеохимические особенности подземного пластового льда полуостровов Югорского и Ямал // Геохимия, 2003, №10. C. 1084—1104.
22. Леин А.Ю., Саввичев А.С., Лейбман М.О., Передня Д.Д. Ледовая летопись: пример расшифровки с помощью изотопных трассеров // Природа, №7, 2005. C. 25—34.
23. Баду Ю.Б., Иванина Д.Ю. Развитие криолитогенеза в районах побережья западного сектора Арктики // Криосфера земли, 2004, т.8, №2. С. б4—73.
24. Кизяков А.И., Лейбман М.О., Передня Д.Д. Деструктивные рельефообразующие процессы побережий Арктических равнин с пластовыми подземными льдами // Криосфера Земли. 200б. Т. 10. № 2. C. 79—89.
25. Стрелецкая И.Д., Каневский М.З., Васильев А.А. Пластовые льды в дислоцированных четвертичных отложениях Западного Ямала // Криосфера Земли, 200б, т. X, №2. С. б8—78.
26. Баженова Е.А., Ванштейн Б.Г., Дмитриева М.В. Геохимические особенности залежей пластового льда как индикатор их образования (на примере прибрежной зоны Карского моря)// Геология морей и океанов: Материалы XVII Международной научной конференции (Школы) по морской геологии. Т. I. М.: 2007. C.18 — 20.
27. Лейбман М.О., Кизяков А.И. Криогенные оползни Ямала и Югорского полуострова. Москва-Тюмень, ИКЗ СО РАН, 2007. 20б с.
28. Слагода Е.А., Лейбман М.О., Опокина О.Л. Генезис деформаций в голоцен-четвертичных отложениях с пластовыми льдами на Югорском полуострове // Криосфера Земли, 2010 а, т. XIV, №4. C. 30 — 41.
29. Leibman, M.O., Hubberten, H.-W., Lein, A.Yu., Streletskaya, I.D., Vanshtein, B.G. 2003 Tabular ground ice origin: cryolithological and isotope-geochemical study // Proc. of the 8th Intern. Conf. (Zurich, 21-25 July, 2003). Lisse, Netherlands, Balkema Publ., vol. 1: б45-б50.
30. Хомутов А.В., Бабкина Е.А., Белова Н.Г., Дворников Ю.А., Лейбман М.О., Нестерова Н.Б., Хайруллин Р.Р. Термоденудационные процессы на побережье Югорского полуострова // Геология морей и океанов: Материалы XXIII Международной научной конференции (Школы) по морской геологии. Т. II. - М.: ИО РАН, 2019. -320 с. D0I:10.29006/978-5-9901449-6-5.ICMG2019-2. Стр. 1б8-172.
31. Svendsen, J.I. et al. 2004. Late quaternary ice sheet history of northern Eurasia // Quaternary Science Reviews 23: 1229—1271
ПЛАСТОВЫЙ ЛЕД ТЕРМОЦИРК КРИОГЕННЫЙ ОПОЛЗЕНЬ ТЕЧЕНИЯ ТЕРМОДЕНУДАЦИЯ СЕГРЕГАЦИОННЫЙ ЛЕД ПОДЗЕМНЫЙ ЛЕД НЕОПЛЕЙСТОЦЕНОВЫЕ ОТЛОЖЕНИЯ СТРОЕНИЕ ЛЬДА МНОГОЛЕТНЕМЁРЗЛЫЕ ОТЛОЖЕНИЯ ЮГОРСКИЙ ПОЛУОСТРОВ
Другие работы в данной теме:
Контакты
Обратная связь
support@uchimsya.com
Учимся
Общая информация
Разделы
Тесты