Спросить
Войти
Категория: Математика

ПРИМЕНЕНИЕ НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА ДЛЯ ВОССТАНОВЛЕНИЯ ФУНКЦИИ ПО ЕЕ ГРАДИЕНТУ

Автор: Попов Игорь Павлович

УДК 514.742.4

И.П. Попов

ПРИМЕНЕНИЕ НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА ДЛЯ ВОССТАНОВЛЕНИЯ ФУНКЦИИ ПО ЕЕ ГРАДИЕНТУ

Предложен способ восстановления функции по ее градиенту, в основу которого положено суммирование неопределенных интегралов от частных производных функции и исключение лишних слагаемых.

THE APPLICATION OF THE INDEFINITE INTEGRAL TO RECONSTRUCTING A FUNCTION

FROM ITS GRADIENT

The paper presents a method of reconstructing a function from its gradient. The method is based on the summation of indefinite integrals from partial derivatives of a function and elimination of redundant summands.

Key -words: gradient,function, partial derivative, integral, -variable.

Актуальность задачи определения функции по ее градиенту достаточно показать на примере пространственного распределения сил, которое является градиентом энергии соответствующего поля [1-5].

Применительно к большей части приложений можно ограничиться рассмотрением операций на пространстве векторных полей и гладких функций в R3.

Существует несколько способов [6-8] отыскания функции по ее градиенту

, , _ (д[ д/ д/) ё/ = У/ = .

^от ду дг)

Наиболее простой способ [9] заключается в вычислении криволинейного интеграла

/ = [ — йх +—dy +—dz =

J дх ду дг

(X, у0, г0)сЬс + (х, у, г0)4у + (х, у, £)дг.

* ох ду дг

Уо 2о

Достоинством этого метода является компактность, недостатком - необходимость выбора начальной точки интегрирования (хо,уо,г0). Последнее сопряжено с произволом, который может отразиться на виде окончательного решения. Кроме того, в ряде случаев это может быть сопряжено с трудностями, вследствие чего представлять собой дополнительную задачу. Пример 1. Для двухмерного случая

д[ д/ х2 х — = 2хагсзт у + 1п (у -1), — =--1-— If, — I-- I

дх ду у-1

возникает проблема с выбором у0, поскольку должны одновременно выполняться условия: у < 1 и

У > 1Есть способы (например, [10]), лишенные этого изъяна. Они заключаются в подборе вспомогательных функций. Их существенные недостатки - трудоемкость и громоздкость.

Предлагаемый нами подход свободен от недостатков указанных способов. По трудоемкости и компактности он сопоставим с первым способом, и в нем нет необходимости определения исходной точки интегрирования.

Теорема. Функция/может быть восстановлена по ее градиенту (1) в соответствии с формулой:

/ = +\\—dy - 2К - Г„ - УХ7 - К + С =

J дх су дг ^ ^ " ^

= Рху2 (X, у, 2) + Рху (х, у) + РХ2 (X, 2) + рх (X) + ^ (X, у, 2) + ^ (х, у) + ^ (у, 2) + 0у (у) + (2)

+Рху2 (х, .у, 2) + ЯХ2 (х, 2) + Яуг (у, 2) + (2) - 2¥хуг - ^ - ГХ2 - Гуг + С. При этом

Р = О = Р = V ("34)

хуг ¿^хуг хуг хуг & V /

= <2ху = Уху, (4)

Р.в = = ^ , (5)

<2уг = Руг = ^ • (6)

Величины (3) - (6) представляют собой функции, содержащие переменные, указанные в индексах.

Доказательство. Очевидны равенства:

1= Р.^ (У, г) + Р,у (X, У) + Ра (X, 7) + Рх (X)

= О. (У,г) + (У) + в^ (У,г) + ву (У);

| ^ ^ = (х, у, 2) + Ях2 (х, г) + Яу2 (у, 2) + Я2 (г),

■ - Ят

дхдудг Зх дхдудг дхдудг 53 53 / 5 ^

■ * Ял;

дхдудг* ду дхдудг дхдудх 53 53 / 53 кху2

■ * я^

дхдудг1 дг дхдудг дхдудг Отсюда непосредственно следует (3):

дхду1 дх дхду дхду дхду д2 [дГ д2/ 5^ , 5^

дхду1 ду дхду дхду дхду Отсюда, с учетом (3), следует (4):

^2 Г 2 / 2 Рху2 д > Р

■ • Яг

дхдг} дх дхдг дхдг дхдг

82/ _52+ 82Д

Зх 8х8г 8х8г 8х8г Отсюда, с учетом (3), следует (5):

а2 / _ а 2а,г а ^

дудг дудг дудг 82 ^ 82 Я 82 Я

V J хуг уг

дудг* 8у 82 гд/

-I-UZ —-—--1-дудг* дудг дудг дудг Отсюда, с учетом (3), следует (6). Координаты градиента функции (2) можно вычислить следующим образом.

дх дх I

:(/£*+о^ + а, + оу. + оу +

++ ^ + я* + - 2 гхуг - гху - гхг - гуг + с):

Слагаемые в скобках, являющиеся функциями от х, кроме первого, взаимно уничтожаются. Частные производные по х от остальных равны нулю.

Аналогичным образом обстоит дело с частными производными по_у и г.

Таким образом, градиент правой части (2) равен (1), следовательно, правая часть (2) представляет собой восстановленную функцию/ Теорема доказана. Следствие.

/ = ^ + Уху + УХ1 + Ууг + Ух + Уу +У2 + С. (7)

Здесь Ух = Р(х), ¥у = <2у(у), = Яг(г). Пример 2.

grad/ = — + эт у н---ь 2х \\ + х сое у--- + 2уг + 3у

/ V Л (

— + 1п х + 3 у г - е2

2

/ =--ь х эт у + г 1п х + х

—ь х эт у + у г + у

--ь г 1п х + у г - е2 - 2--х эт у - г 1п х - у г + С =

v у ) у

=--ь х эт у + г 1п х + у г + х + у - е1 + С.

Здесь

= = Ку; = Уху; =~, РХу = Яху = Уху = Х вШ У, Рхг = ^ = = 2 1п X,

<2у, = = г* = у2^ р* = к = х2, б, = = = = .

Вычисление по формуле (7) еще компактнее.

1. Попов, И.П. Приложение мнимых векторов к моделированию абстрактного силового поля // Вестник Амурского гос. ун-та. - 2016. - Вып. 73. - С. 10-24.
2. Сельвинский, В.В. Сдвиг с места твердого тела с распределенным контактом // Вестник АмГУ. - 2011. -№ 53. - С. 3-6.
3. Попов, И.П. О некоторых аспектах магнитоэлектрического взаимодействия // Вестник Челябинского гос. ун-та. - 2009. - Вып. 5, № 24(162). - С. 34-39.
4. Попов, И.П. О пространственной конфигурации вихревого электрического поля // Вестник Курганского гос. ун-та,- 2009. - Вып. 2, № 1 (15). - С. 50-51.
5. Попов, И.П. Дуально-инверсный аналог силы Ампера для магнитопровода с изменяющимся магнитным потоком, находящегося в электрическом поле // Вестник Курганского гос. ун-та. - 2009. - Вып. 2, № 1 (15). -С. 51-52.
6. Попов, И.П. Разновидности оператора набла // Вестник Амурского гос. ун-та. - 2015. - Вып. 71. - С. 20-32.
7. Попов, И.П. О некоторых операциях над векторами // Вестник Волгоградского гос. ун-та. - Серия 1: Математика. Физика. - 2014. - № 5 (24). - С. 55-61.
8. Попов, И.П. Поверхностные градиент, дивергенция и ротор // Вестник Псковского гос. ун-та. - Естественные и физико-математические науки. - 2014. - Вып. 5. - С. 159-172.
9. Богданов, Ю.С. Лекции по математическому анализу. - Ч. 2. - Минск: Изд-во БГУ, 1978. - 384 с.
10. Пискунов, Н.С. Дифференциальное и интегральное исчисления для втузов. - Т. 2. - Изд. 13-е. - М.: Наука, 1985. - 560 с.

УДК 517.922.519.21

В.А. Труфанов, Т.В. Труфанова, М.Д. Штыкин ДЕЙСТВИЕ ЛИНЕЙНОГО ОПЕРАТОРА НА ПРОЦЕСС (0

В статье рассматривается нахождение решения линейного неоднородного дифференциального уравнения в виде осциллятора, правой частью которого является процесс ^ (t)

EFFECT OF THE LINEAR OPERATOR ON PROCESS )

The paper deals -with the solution of a linear nonhomogeneous differential equation in the form of an oscillator, the right part of iwhich is the process ^ (t).

В приложениях приходится исследовать случайные процессы, получающиеся в результате применения более сложных математических операций (символически обозначаемые оператором) к случайным процессам, характеристики которых известны.

Важный класс линейных операторов можно представить в виде:

7/(0 = {к(t, tl)^(tl)dtl, (1)

где процесс, к которому применяется данный оператор; К(t,известная функция, вид

которой и определяет свойство оператора. В частном случае, когда функция К(t, t^) является функцией разности своих аргументов, формула (1) принимает вид:

ГРАДИЕНТ gradient ФУНКЦИЯ function ЧАСТНАЯ ПРОИЗВОДНАЯ partial derivative ИНТЕГРАЛ integral ПЕРЕМЕННАЯ variable
Другие работы в данной теме:
Контакты
Обратная связь
support@uchimsya.com
Учимся
Общая информация
Разделы
Тесты